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TECHNICAL, PAPER 

ANALYSIS OF RANDOM  SIGNAL  COMBINATIONS FOR SPACECRAFT 
POINTING  STABILITY 

1. INTRODUCTION 

Design and  performance  criteria  for  space vehicle pointing  systems  must  frequently  incorporate 
combinations  of  random signals. This  often involves a  white noise process  superimposed on a time varying 
error profile. For example, as the Space Telescope' emerges from  behind the shadow of the  Earth, solar 
heating is expected to produce  a  structural  deformation  resulting  in an image error  which can be  adequately 
described by  an  exponential process. Independent  and additive to  this  error  is the  rate gyroscope noise which 
is assumed to follow  a  normal  distribution. 

Because the  control system designer needs  some  criteria to  assess the  impact of these  disturbances 
on  the performance  of  the  system,  the  probability  distribution  of the sum of these  two  effects is required. 
Typically, the RMS (Root Mean Square) is  used as a  measure of performance.  This,  among other  important 
information,  may  be  obtained  from the probability  density  function  of  the sum of  these  two disturbances. 

Since the  error profile is a  known  function  of  time,  the  statistical  properties  of  the  combined  errors 
for a specified time t can easily be evaluated. However, this is, in general, not representative of  typical 
signal analysis. For example,  a  frequentiy used technique picks the maximum of  the  known  error profile 
and  then  adds to that maximum another  two  or  three  standard deviations  of the superimposed noise dis- 
tribution.  This is clearly an overly conservative method  for  most  applications and puts  an unrealistic  demand 
on  the  control system designer. 

The  approach to be used here is to imagine the system being observed at  random times. What then 
is the  statistical behavior  of the combined observed errors over the  time  domain  of  the  error profile? 

This is equivalent to  considering time to be a  uniformly  distributed  random variable, with  the goal 
now being the  determination  of  the noise and  error profile, the  latter now being treated  as  a  random variable 
as well. 

II. METHODS 

Let T be  a  random variable with a  density  function given by 

1. Space  Telescope is a pioneering  observatory  scheduled  for  in-orbit  operation  in mid-1986. 



The  error  profie  random variable is denoted  by X, where X = h(T).  The noise variable is represented 
by Y with  density  function  gy(.).  Let UZ(.) denote  the  probability  density  function  for Z = X + Y. 

By the  method  of  convolutions,  the  resultant  probability  density  function  of  the  random variable Z 
is  given by 

where  the  integral is over the  set = { t:  z-h(t) E Domain(y) 1 . 
As an  alternative  method,  one may first obtain  the  characteristic  function  of  the  random variable Z 

as 

by  independence of X and Y. 

Assuming @,(E) to be Lebesgue integrable over the  entire line, we have: 

as the desired probability  density  function of the  random variable Z [ 1 1 .  These methods will be  illustrated 
in the following  section. 

111.  APPLICATION 

A. Gaussian Noise on  Exponential Curve 

Thermal  models  predict  that  solar  heating of the Space  Telescope will produce  a  structural  deforma- 
tion which will induce an image drift  (arc sec)  described by  the  equation 

X = h(t) = 0.0037(1 - e-t/4) 0 < t < 24  hours . (5) 

The  rate  gyroscope, used for  attitude  determination, has an associated noise profile Y which is 
assumed to be Gaussian with  zero mean and a standard  deviation of 0.0047  arc  sec (Fig. la). 
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I X = -0037 (1 -e-t/4 ) I 

TIME (HOURS) 

-0 

0 3  

Z (arc sec) 
Figure  1 b. Probability  density  function  of Gaussian noise on exponential  function. 
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The  resultant  density  of  the sum of  the  two is given by: 

-1 
[Z - 0.0037(1 - e-t/4)] 

1 
uz(z) = dt . 

Numerical  integration gives uz(z) as depicted in Figure  1 b. 

B. Gaussian Noise on Cosine  Wave 

Imbalances in the Space  Telescope  reaction wheels result  in a sinusoidal image error of constant 
amplitude A. Rate  gyroscope  noise,  combined  with  guide  star  photon  fluctuation  counts, is assumed to be 
superimposed  on  this  sinusoidal  error  profile as Gaussian white  noise (Fig. 2a).  Thus, we have X = h(T), 
where 

h(t)= A cos t 0 < t  <2.rr . 

Using the  method  of  characteristic  functions, we  have 

Figure 2a. Gaussian noise (UN = 0.2)  on cosine wave (amplitude  2). 
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which yields: 

where Jo is Bessell's equation  of  order zero. Hence, for Gaussian noise Y with characteristic  function 

and using the relation 

equation (4) yields 
1 
" 

2 
(z - A  cos t)2 

, .  1  1 f a  2 UhT 
UZ(Z) = - e 

which agrees with  the results obtained  by  the  method  of convolutions.  Figure 2b depicts the family of dis- 
tributions as  a  result  of varying A between  one and four, keeping ON = 0.2  fixed. 

i 

I 
Z (arc sec) 

Figure  2b.  Family of  distributions  for Gaussian noise (an = 0.2) on cosine wave. 
Amplitude  between 1 (narrowest bi-modal curye) and 4 (widest). 
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C. Gaussian on Damped Sine Wave 

Vibrations  of  solar  masts of the Space Shuttle  Orbiter  payloads  are  expected to produce  a  damped 
sinusoidal  pointing  disturbance for  on-board  sensors.  Independent  and  additive to this  error  is  a  noise  source 
which  follows the normal  distribution  with  zero mean and  standard  deviation uN. Figure 3a depicts 
Gaussian noise (UN = 0.2)  on  a  damped  sine  function  of  amplitude  2.5  and  damping  coefficient  of 0.3, 
shown for  four  time  constants. Hence, the  resultant  density  function is given by 

where T extends over four  time  constants. 

The  density  function  uz(z) in Figure  3b is for  the above  parameters.  The  family of distributions 
obtained  for ON = 0.2, = 0.3,  and 1 < A < 4 is shown by the  stereo pair2 in  Figure 3c. 

11 -2”- TIME 

Figure  3a. Gaussian noise on damped sine  wave. 

t 

~ 

2. See Appendix A, Stereo  Visualization  Without  Optical Aids. 
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I l a 5  

I 
" z <aG sec)  

Figure 3b. Density function  for Gaussian noise on  a  damped sine wave. 

1 .. 

MEAN -17 
RMS -61 

4 

I r 

Figure 3c. Stereo  picture of family of distributions  for Gaussian noise on  damped sine wave, 
with ON = 0 2 /3 = 0.3,  and the amplitude varying between 1 (foremost U,(Z)) and 

4 in the Y-axis. . Y  
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D. Gamma on Damped Sine Wave 

Quite often  the noise source is non-Gaussian and  the gamma distribution, being very flexible, may 
be suitable for many processes where the random variable takes  on values greater than zero. If the  error 
signal is a  damped  sine wave  given by 

h(t) = A e-Pt sin t , (1 3) 

and  the noise distribution is gamma with  density  function given by 

an  
yn-' eaY , where a, n,  and  y > 0 , 

we obtain  the following density  function  for Z = X + Y: 

where the  indicator  function I is used and  defined  by 

t 0 X G O  

1 x>o 
I(x) = 

Figure 4a  depicts the integrand in equation  (15)  with a = 1,  n = 2, P = 0.5, and A = 4. Figure 4b 
shows the resultant  density  function. 

IV. CONCLUSIONS 

The  control  system designer of spacecraft  pointing  systems  must  frequently  incorporate combina- 
tions  of  random signals and  their  effects in the overall control design. Traditionally, when the probability 
distribution  of the combined signals  is unknown, the designer will use overly conservative measures of 
these  effects  which place restrictive bounds  on  the  control design. 

Two methods are presented for characterizing the statistical behavior of  a  random signal super- 
imposed on  an  error profile. Each assumes that  the  two processes are  independent  and additive. The first 
method  computes the probability  density  function of  the combined  error signals by  the use of convolu- 
tions  and is usually amenable to numerical  methods. However, the second  method, which uses characteristic 
functions,  may  in  some cases be  more  tractable.  Thus,  one will find both  methods useful and, in some 
cases, it may  be enlightening to  use one  method as a check on  the  other. 
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Figure 4a. Integrand in equation (1 5) for gamma distribution  on  damped sine. The 
X-axis represents the variable t and the Y-axis the variable Z. 

1 0  
- I  

~ 

MEAN -49 

RMS 1.72 

3 

Z 

Figure 4b.  Probability  density  function for gamma noise on  damped sine wave. 
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APPENDIX  A 

STEREO  VISUALIZATION  WITHOUT  OPTICAL  AIDS3 

(Cross-Eyed  Stereo) 

On many  occasions in engineering and  physical analysis, it would be  useful to be able to sketch  in 
three dimensions. To fulfill  this wish in  many cases, a  convenient  technique  which  requires no  optical devices 
other  than one’s eyes may  be used. All that is required is a  stereoscopic  pair of images. One  additional cap- 
ability is necessary. The observer must  be able to cause the lines of sight of his eyes to converge; i.e., one 
must cross one’s eyes. The  stereo  projections  are  formed as shown  in  Figure A-1. The images are reversed 
and viewed as in Figure A-2.  With a  little  practice, one can easily learn to reconstruct  mentally, the 
3-dimensional scene from the reversed stereo pairs. In  this  report  there  are  two  stereo pictures. The 
interested  reader  should  try several viewing distances. (The  farther  away  the page the less crossing of the 
eyes is required  and the easier it becomes to  focus the images.) Squinting  may also help as it increases one’s 
depth  of focus. When one first  looks at a  stereo pair, one focuses on  the page and sees two similar but 
separate images.  As one begins to cross his eyes, the  two images become  four. Continue crossing the eyes 
until  the  interior pair of images come  together.  Since  the line connecting  corresponding  points on  the images 
must  be at  the same angle about  the line of sight as the line connecting  the eyes, it may be necessary to  
rotate  the page or rock the head until these  two images become  superimposed  and seem to merge into a 
stereo image. This  technique  does  require  some  practice  but  once  mastered  it can be very useful  for easy 
visualization in 3 dimensions. 

If a  computer  with  plot  capability is available, we  can construct the necessary stereo  projections 
from  a  set  of  points  and lines that represent the object of interest. We have referred to such  a  representation 
as a wire frame  model because of the appearance  of the image. Let  P be a  representative point  of  the model. 
Each  point  P is projected into  the  picture plane S as  shown in Figure A-3. The  point P is projected to  the 
eyepoint E and the line PE intersects  the  picture plane S at P’.  P’ is the  projection of P onto S .  The set  of 
all points P’ projected  from  object  points  P  together  with the connecting lines form the desired projection. 
We set up a  reference  frame  in the plane S .  To do this, we must  specify  which way is up (so to speak). Let 
gu be  a  unit  vector  in  this  direction  and yr = yu x 2 is a  unit  vector in S pointing to  the right. We place the 
origin of  the S coordinate  reference  at 0. Observe that z0 = :E + d j ;  where zo and  are  position  vectors 
of 0 and E, respectively. From  the  geometry shown  in Figure A-3,  we can see that 

From  this we can compute 

Since I Q =a. G~ = 0, 
~ 

3. Extracted  from NASA  TM-78252, Torque Equilibrium Attitude  Control For Skylab  Reentry, Nov. 1976, 
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by  John R. Glaese and Hans F. Kennel. 



The  set of points  (xp’, up’) plotted  conventionally  forms  the  desired  projection. Size can be altered by scale 
adjustments.  These  projections  are  then placed as desired.  Also, the values used for  d and eye  separation s 
are  arbitrary  and can be  adjusted  for  convenience  or  eye  comfort.  In  real  life s S 65 mm and d ? 250 mm 
for  comfortable  reading;  however, it may  be  more  comfortable  for d  to be larger. Some  initial  experimenta- 
tion  with  this  technique  should  establish  desirable  settings. 

LEFT EYE I 

RIGHT EYE 
S 

Figure A-1. Stereo  projection. 
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IMAGE 

IMAGE 

Figure A-2. Stereo  reconstruction  by cross-eyed viewing. 

P 

E 0 
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I4 = 1 
- 

t 
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S 

Figure A-3. Projection  geometry. 
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